
D
igital copying involves a process
called half-toning, which transforms
a continuous range of tones into a
two-tone image. Text and image have

different half-toning procedures, and a relative
simple edge detector can differentiate between
them. However, raster images confuse detectors
by letting them think erroneously that text
instead of image has to be half-toned. The
consequence of this is shown by the ‘lighter’
blobs in the clipped halftone result (shown by a
rectangle in Fig. 1).

This article describes the development of a
local raster detector to solve this problem, using
a proven methodology using the relatively new
array processing language J.

Towards system requirements
In principle it is possible to detect the

existence of a raster in a local neighbourhood by,
for example, using a Fourier transform. However,
developing a detector on a standard PC platform requires
that adequate quality is achieved with a computation
time for detection, which does not exceed 0·5s for an A4
original scanned at 300 dpi (dots per inch, a measure for
printing resolution) resolution. Also the detection should
be independent of the raster form (e.g. line, dot rasters)
and orientation. It should also be based on information

retrieved locally, and it has been determined that 8 × 8
pixel sized tiles should be adequate. Since only grey level
images are considered, pixels may be taken as equivalent
to bytes.

The frequency band causing half-toning problems is
60-135 lpi (lines per inch, a measure for raster frequency),
and another problem is caused by the erroneous detection
of text as a low-frequency raster. It has been empirically

COMPUTING & CONTROL ENGINEERING JOURNAL DECEMBER 2002 299

SOFTWARE

Developing a raster
detector system with the
J array processing
language
by Jan Jacobs

All digital copying aims to reproduce an original image as faithfully as possible
under certain constraints. In the past, image processing had to be implemented
in hardware for performance reasons. Here, a 100% software solution is
outlined. In order to find such a solution an appropriate methodology based on
the array processing language J is used. Although J is ideal for prototyping such
designs, its wider application is seriously hindered by the lack of awareness of
array processing languages amongst engineers, and by the lack of available
education in this language and methodology.

Fig. 1 Clipped part of a problematic half-toning of raster
information

SOFTWARE

300 COMPUTING & CONTROL ENGINEERING JOURNAL DECEMBER 2002

determined that text builds up most power in the DC and
37 lpi frequency bands in 8 × 8 tiles on 300 dpi scans.

Finally, pure horizontal or vertical line pairs should
not be treated as rasters. The human eye is particularly
sensitive for these kind of patterns, and the best way is to
treat the line pairs as text.

In summary, a solution has to be found which meets
the following requirements:

5 Computation time must be under 0·5s on a 600MHz
Pentium III processor.

5 Only 60-135 lpi rasters, independent of raster form and
orientation, should be detected.

5 Text should not be classified as a raster.
5 Strict horizontal or vertical line rasters should not be

classified as a raster.

Approach taken
The methodology supports a

traditional incremental design process
but with one difference, namely that
intermediate designs are executable.

For the requirements phase this means
that early feedback is possible and that
functional specifications can be agreed on
in an early stage (see Fig. 2, where the
executable specs are denoted by
‘architecture’). The actual architecture for
rasterDetect will be derived later.

For the implementation phase early
feedback on design alternatives and
(cumulative) design choices minimise
proliferation of errors. A first
implementation is outlined later (see also
Fig. 2).

In the development process, choices are
recorded for both phases. This is done in
such way that, at all major decision points,

choices can easily be undone to support changes in
design.

The approach is based on the ‘computer architecture’
methodology for hardware and software systems devel-
oped by Blaauw and Brooks while working at IBM in the
late 1960s.1 At that time the language APL was used to
support the methodology.

Here the successor language J is used to support
both the problem analysis and the design process. J
fragments will be given that helped in developing the
architecture as well as the implementation process in an
interactive way. The code given in these fragments is
accompanied by examples. The reader should note that,
because of the Journal column widths, the J fragments
have been ‘wrapped around’ and would normally appear
on one line.

Architecture
In this phase the required functionality of

the detector is developed. It is coded in an
executable specification (architecture)
without the burden of implementation
constraints. The analysis as well as the
construction of the architecture is supported
by J code fragments.

Problem analysis
Promising methods found in the literature

to detect rasters are often based on Fourier
transforms to solve the following problems:

5 independence of raster form (dots, line
pairs etc.)

5 independence of raster orientation (all
angles)

5 handling of text

abstraction
level

functionality
target machine level

(trackable) requirement phase
problem

architecture

high-level
implementation

realisation
complete

(trackable)
implementation

phase

Fig. 3 Bitmap read into the matrix variable

Fig. 2 Used development methodology; separation of functionality and
implementation

149 163 149 154 152 143 163 150 164 146 159 143 161 145 164 148

158 147 159 156 154 156 150 157 145 163 147 164 146 158 152 157

147 165 148 154 152 146 159 147 159 147 157 150 158 147 163 150

157 145 156 154 161 152 150 153 148 157 148 161 149 154 152 153

148 166 147 156 152 152 157 150 156 152 155 155 157 150 156 154

158 152 156 154 156 151 155 150 153 159 151 150 155 149 161 146

150 159 149 156 154 152 154 153 149 157 150 156 150 157 149 157

157 156 154 153 154 151 153 152 155 152 152 150 159 146 164 146

150 153 151 151 155 151 155 155 148 158 150 158 148 156 142 160

151 156 149 153 150 153 153 154 150 150 152 145 161 142 168 140

151 153 156 149 158 149 156 152 151 157 148 161 147 159 140 164

148 157 147 153 150 155 152 155 151 150 153 146 162 143 169 142

152 151 157 148 159 148 153 151 149 158 149 164 146 160 140 166

145 160 144 154 146 158 151 159 152 150 154 141 166 143 173 139

158 142 163 144 165 142 154 148 149 159 150 163 145 162 134 168

143 165 137 160 144 160 150 158 151 148 154 141 165 141 173 135

SOFTWARE

COMPUTING & CONTROL ENGINEERING JOURNAL DECEMBER 2002 301

5 handling of strict horizontal or vertical
line rasters.

Execution speed is not an issue in this phase.
To start the investigation, a part of the

problem area in Fig.1 is read in a matrix.

load ‘graph’ NB. load image
library
bitmap =: readbmp ‘raster.bmp’
NB. read bitmap

A small bitmap (16 × 16) is read into matrix
variable bitmap (Fig. 3).

Since the analysis must be performed in a
local environment the bitmap is first tiled in
8 × 8 byte patches before being transformed
into the frequency domain.

load ‘addons\fftw\fftw’
NB. load fft library
tiles =: (2 2$8) <;._3 bitmap
NB. tessellate bitmap
tilesF =: fftw &.> tiles
NB. apply fft analysis to each tile

The verb <; ._ 3 is a shorthand in J for ‘tessellate’ with the
tiling pattern given by the left argument. This tiling
pattern, defined by 2 2$8, evaluates into a 2 × 2 shaped
matrix containing all 8s, is given below:

8 8
8 8

This matrix actually defines a movement vector and a
displacement vector for the two dimensions used in the
tiling process. The result of this tessellation is given in Fig.
4.

The spectrum of one of these patches or tiles (upper left)
is shown in Fig. 5. The following observations can be made:

5 The (amplitude) spectrum contains complex numbers,
the real part is at the j’s left-hand side, the imaginary
part at the right-hand side.

5 The DC component, upper left corner at (0,0), is
relatively large.

5 The maximum amplitude can be found at (y,x) = (4,3)
and at (4,5) indicating a relatively high frequency
raster.

5 Note the symmetry around column and row number 4,
the principal components may be confined into an
upper left 5 × 5 sub-matrix.

Analysis indicates that in the problem regions two
dominant rasters occur in the 60-135 lpi band. The
solution of the problem is a band detector, which should
have the circular symmetry property, since rasters may
be positioned under arbitrary angle (see Fig. 6).

Towards a solution
The architecture is a functionally complete and

Fig. 4 Result of tesselation

9.82e3 6.68j_30 0j_7 _28.7j_76 13 _28.7j76 0j7 6.68j30

_0.0503j6.88 15.5j7.03 _5.81j11.2 3.59j_1.51 3.91j_7.71 _7.17j4.9 _19.5j_4.54 17.5j6.83

6j_11 8.19j0.293 _5j8 2.88j_25.6 2j3 _10.2j1.71 _11j12 7.12j_4.39

_9.95j_11.1 6.41j18.5 21.5j_2.54 32.5j_22.1 41.1j6.29 _47.5j_1.17 _24.2j_26.8 _12.8j14.9

_31 17.9j_3.1 _44j_45 _59.9j_117 _85 _59.9j117 _44j45 17.9j3.1

_9.95j11.1 _12.8j_14.9 _24.2j26.8 _47.5j1.17 42.1j_6.29 32.5j22.1 21.5j2.54 6.41j_18.5

6j11 7.12j4.39 _11j_12 _10.2j_1.71 2j_3 2.88j25.6 _5j_8 8.19j_0.293

_0.0503j_6.88 17.5j_6.83 _19.5j4.54 _7.17j_4.9 3.9j7.71 3.59j1.51 _5.81j_11.2 15.5j_7.93y

x

Fig. 5 Spectrum of one of the patches or tiles

149 163 149 154 152 143 163 150 164 146 159 143 161 145 164 148

158 147 159 156 154 156 150 157 145 163 147 164 146 158 152 157

147 165 148 154 152 146 159 147 159 147 157 150 158 147 163 150

157 145 156 154 161 152 150 153 148 157 148 161 149 154 152 153

148 166 147 156 152 152 157 150 156 152 155 155 157 150 156 154

158 152 156 154 156 151 155 150 153 159 151 150 155 149 161 146

150 159 149 156 154 152 154 153 149 157 150 156 150 157 149 157

157 156 154 153 154 151 153 152 155 152 152 150 159 146 164 146

150 153 151 151 155 151 155 155 148 158 150 158 148 156 142 160

151 156 149 153 150 153 153 154 150 150 152 145 161 142 168 140

151 153 156 149 158 149 156 152 151 157 148 161 147 159 140 164

148 157 147 153 150 155 152 155 151 150 153 146 162 143 169 142

152 151 157 148 159 148 153 151 149 158 149 164 146 160 140 166

145 160 144 154 146 158 151 159 152 150 154 141 166 143 173 139

158 142 163 144 165 142 154 148 149 159 150 163 145 162 134 168

143 165 137 160 144 160 150 158 151 148 154 141 165 141 173 135

SOFTWARE

302 COMPUTING & CONTROL ENGINEERING JOURNAL DECEMBER 2002

executable specification, and therefore provides a proven
correct basis when starting the implementation process.

In an 8 × 8 tile, rasters as fine as 212 lpi can be detected,
large enough for the required 60-133 lpi band (see Fig. 7).
Since the 8 × 8 spectrum of this tile exhibits redundant
information only the principal components—expressed
by their lpi numbers—are presented in a 5 × 5 matrix.
The band detector indicated by Fig. 6 is approximated by
the shaded components.

The specification for raster detection in the 60-135 lpi
interval, resulting in a single boolean per tile, is now
derived and expressed in J fragments.

The matrix singleTileF is one of the many frequency

domain tiles (tilesF, see Fig. 5). The power spectrum of
this 8 × 8 tile is taken by first squaring each complex
number (*:) followed by taking its magnitude (|). Note the
right to left evaluation order, see Fig. 8. The identity
function] forces a display of its right argument
(assignments are silent).

] powerTileF =: |*: singleTileF

Since only the shaded components in Fig. 7 are required
we only select the lower 4 × 4 submatrix (4 4{.), see Fig. 9:

] intermdF =: 4 4{. powerTileF

Looking closer to the components which have to be
selected one can cover the shaded area by masking of the
lower 2 × 2 sub-matrix and component (3,3). This is done
by function ammend (}), which can update specified
(group) components. The left 0 is the update value (see
Fig. 10 for the filtered result):

] filteredF =: 0((0 1;0 1);3 3)} intermdF

The accumulated power in this frequency band is
determined by counting all columns by function +/ into
four sub-totals and again +/ to accumulate all column
totals. Comparing it with a certain threshold returns the
answer whether a raster is present or not:

rasterDetected=: THRESHOLD < +/+/
filteredF

Putting all the parts together will reveal the complete
functional specification (the architecture) of this raster
detector:

RasterDetected =: THRESHOLD < +/+/
0((0 1;0 1);3 3)} 4 4{. |*: singleTileF

The rejection of pure horizontal and vertical rasters is not
given here but is based on the typical power distribution
between DC and accumulated AC bands.

Implementation
Although the specified functionality is executable it is

still far a way from the target language (in our case C).
The goal of the implementation phase (see Fig. 2)
is to work towards a realisation without
compromising or altering the functionality
(architecture). In this section only a few
implementation problems are addressed.

Problem analysis
Implementation of raster detection in software

on a standard PC with a processing time of less
than 0·5s requires new techniques, such as:

fy

fxfxf
60 135 lpi

band detector

Fig. 6 Requested band detector

0

37

75

112

150

37

53

83

118

154

75

83

106

135

167

112

118

135

159

187

150

154

167

187

212

fxfxf

fy

Fig. 7 Band detector approximation (numbers
indicate lpi)

9.65e7 947 49 6.6e3 169 6.6e3 49 947

47.3 304 160 15.2 74.7 75.4 401 354

157 67.2 89 664 13 107 265 70

223 383 469 1.54e3 1.81e3 2.26e3 1.3e3 387

961 330 3.96e3 1.73e4 7.23e3 1.73e4 3.96e3 330

223 387 1.3e3 2.26e3 1.81e3 1.54e3 469 383

157 70 265 107 13 664 89 67.2

47.3 354 401 75.4 74.7 15.2 160 304

Fig. 8 Power spectrum

SOFTWARE

COMPUTING & CONTROL ENGINEERING JOURNAL DECEMBER 2002 303

5 reduction of dimensionality
5 reduction of data size
5 use of look-up tables (LUTs) to speed up Fourier

transforms
5 reduction of spectrum information to only the two most

dominant power bands.

The last two are not elaborated here. We will elaborate on
the other two techniques:

5 Reduction of dimension: Current PC processors are not
equipped to deal with Fourier transforms of a single 2D
tile. To do so the 2D problem must be transformed in
real time to simpler multiple 1D problems.

5 Reduction of data size: A good estimate of frequency
content can be made by finding the number of times the
grey values within each byte cross the average values
of rows and columns (see Fig. 11).

Reduction of data size has to be performed for each tile,
and within a tile for each of its rows and each of its
columns. The following derivation shows the reduction
for rows for a single tile (most upper left tile in the tiled
bitmap tiles). This tile, again the upper left one, is given
as Fig. 12.

The averages per row are computed via a so-called
fork construct, a function composition. Averaging
rows includes summation over rows (+/”1), counting the
number of members (#) and taking the quotient of both
(%); concisely notated by ((+/”1 % #)).

The average of each row is given below by vector
threshRows:

] threshRows =: (+/"1 % #) singleTile

152.875 154.625 152.25 153.5 153.5 154 153.375
153.75

Comparing each row with this row average (singleTile >
threshRows) will yield the result as described in Fig. 11
(see boolean matrix, Fig. 13):

] fingerPrintRows =: #. singleTile >
threshRows

The boolean row vectors within this matrix represent the
essence of the original grey level information. To retrieve
its confined raster information in a fast way, an index (to
be used for a LUT) has to be produced for each of the
rows. Each row is interpreted as a binary number by
applying the function #., resulting in fingerPrintRows:

82 181 82 184 82 170 90 232

Summary
The problem size is reduced in several steps until it can

be realised on a standard PC processor. Such reduction
with acceptable quality degradation is performed in the
following steps:

1 2D to multiple 1D transforms reduction
2 removal of DC power and other non relevant frequency
content
3 reduction of grey level information to numbers of zero
crossings
4 reduction of generated spectra to only the two highest
power bands.

The complexity of this particular detector was suffici-
ently low that a C implementation could be made by hand
with the necessary LUT tables generated by a J script to
C source, although J could well have been used for the
complete development: implementation as well as design.

Fig. 9 Intermediate result

9.65e7 947 49 6.6e3

47.3 304 160 15.2

157 67.2 89 664

223 383 469 1.54e3

0 0 49 6.6e3

0 0 160 15.2

157 67.2 89 664

223 383 469 0

Fig. 10 Filtered result

raster

pixel within tiles

average

0 1 2 3 4 5 6 7

index: 1 1 1 0 0 1 1 1

Fig. 11 Reducing the data size to 1 bit/pixel

SOFTWARE

304 COMPUTING & CONTROL ENGINEERING JOURNAL DECEMBER 2002

Conclusions
Raster detection

The goal of both raster form and orientation-inde-
pendence is realised (see Fig. 14 to get an impression of the
enhancements.) The white blobs are clearly much smaller
than before.

The global raster detection is realised within 0·13 s on
average per A4 page on a 600 MHz Pentium III. No

significant improvement can be expected from optimisation
in processing speed since within-memory data transfer rates
enforce a lower bound, which has been determined as 0·09 s.

Methodology and language issues
Using J for this and other applications helped build up

experience of how IT professionals use the language. The
following statements summarise their findings:

Positive features of J
1 It supports the requirement phase, starting from problem
analysis to functional specification (architecture).
2 It supports the design and the recording of design

decisions and alternatives during the implementation
phase.
3 It enables early executability of specifications, and
thereby reduces proliferation of errors further on in the
software development process.
4 It enables functionality to be expressed at any given level
of abstraction, from a high abstract level down to
production code.

Negative features of J
1 The relationships between J concepts and the
development methods used in the architectural
and design processes are not completely
straightforward.
2 More specifically, it is not immediately clear
how to use the benefit of executable
specifications, that is, by gradually replacing
abstract specifications with implementation code.
3 Deriving an architecture and developing an
implementation do not in themselves require a
specific computing language.
4 J does not resemble other popular languages and
has an esoteric image, which makes it difficult to
switch between J and other languages.

To conclude, using J for problem analysis and
system design is complicated by factors which
have nothing to do with the language itself, but
which can divert attention from the primary goal
of putting a right methodology in place.

Education is the way to address these issues, through
courses at technical colleges and universities. However, for
engineers who are willing to spend time applying this sort
of methodology and learning the language J, the effort
involved will certainly pay off.

Reference

1 BLAAUW, G. A., and BROOKS, JUN., F. P.: ‘Computer architecture:
concepts and evolution’ (Addison-Wesley, Reading, MA, USA, 1997)

© IEE: 2002

The author is with Océ Technologies BV, PO Box 101, 5900MA
Venlo, Netherlands.

149 163 149 154 152 143 163 159

158 147 159 156 154 156 150 157

147 165 148 154 152 146 159 147

157 145 156 154 161 152 150 153

148 166 147 156 152 152 157 150

158 152 156 154 156 151 155 150

150 159 149 156 154 152 154 153

157 156 154 153 154 151 153 152

Fig.12 Tile for 1 bit/pixel

0 1 0 1 0 0 1 0

1 0 1 1 0 1 0 1

0 1 0 1 0 0 1 0

1 0 1 1 1 0 0 0

0 1 0 1 0 0 1 0

1 0 1 0 1 0 1 0

0 1 0 1 1 0 1 0

1 1 1 0 1 0 0 0

Fig. 13 Boolean matrix

Fig. 14 Clipped part of the solved half-toning problem for raster
information

