
D
igital copying involves a process
called half-toning, which transforms
a continuous range of tones into a
two-tone image. Text and image have

different half-toning procedures, and a relative
simple edge detector can differentiate between
them. However, raster images confuse detectors
by letting them think erroneously that text
instead of image has to be half-toned. The
consequence of this is shown by the ‘lighter’
blobs in the clipped halftone result (shown by a
rectangle in Fig. 1).

This article describes the development of a
local raster detector to solve this problem, using
a proven methodology using the relatively new
array processing language J.

Towards system requirements
In principle it is possible to detect the

existence of a raster in a local neighbourhood by,
for example, using a Fourier transform. However,
developing a detector on a standard PC platform requires
that adequate quality is achieved with a computation
time for detection, which does not exceed 0·5s for an A4
original scanned at 300 dpi (dots per inch, a measure for
printing resolution) resolution. Also the detection should
be independent of the raster form (e.g. line, dot rasters)
and orientation. It should also be based on information

retrieved locally, and it has been determined that 8 × 8
pixel sized tiles should be adequate. Since only grey level
images are considered, pixels may be taken as equivalent
to bytes. 

The frequency band causing half-toning problems is
60-135 lpi (lines per inch, a measure for raster frequency),
and another problem is caused by the erroneous detection
of text as a low-frequency raster. It has been empirically
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Developing a raster
detector system with the
J array processing
language 
by Jan Jacobs

All digital copying aims to reproduce an original image as faithfully as possible
under certain constraints. In the past, image processing had to be implemented
in hardware for performance reasons. Here, a 100% software solution is
outlined. In order to find such a solution an appropriate methodology based on
the array processing language J is used. Although J is ideal for prototyping such
designs, its wider application is seriously hindered by the lack of awareness of
array processing languages amongst engineers, and by the lack of available
education in this language and methodology.

Fig. 1 Clipped part of a problematic half-toning of raster
information
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determined that text builds up most power in the DC and
37 lpi frequency bands in 8 × 8 tiles on 300 dpi scans.

Finally, pure horizontal or vertical line pairs should 
not be treated as rasters. The human eye is particularly
sensitive for these kind of patterns, and the best way is to
treat the line pairs as text.

In summary, a solution has to be found which meets
the following requirements: 

5 Computation time must be under 0·5s on a 600MHz
Pentium III processor.

5 Only 60-135 lpi rasters, independent of raster form and
orientation, should be detected. 

5 Text should not be classified as a raster.
5 Strict horizontal or vertical line rasters should not be

classified as a raster.

Approach taken
The methodology supports a

traditional incremental design process
but with one difference, namely that
intermediate designs are executable. 

For the requirements phase this means
that early feedback is possible and that
functional specifications can be agreed on
in an early stage (see Fig. 2, where the
executable specs are denoted by
‘architecture’). The actual architecture for
rasterDetect will be derived later.

For the implementation phase early
feedback on design alternatives and
(cumulative) design choices minimise
proliferation of errors. A first
implementation is outlined later (see also
Fig. 2).

In the development process, choices are
recorded for both phases. This is done in
such way that, at all major decision points,

choices can easily be undone to support changes in
design.

The approach is based on the ‘computer architecture’
methodology for hardware and software systems devel-
oped by Blaauw and Brooks while working at IBM in the
late 1960s.1 At that time the language APL was used to
support the methodology.

Here the successor language J is used to support 
both the problem analysis and the design process. J
fragments will be given that helped in developing the
architecture as well as the implementation process in an
interactive way. The code given in these fragments is
accompanied by examples. The reader should note that,
because of the Journal column widths, the J fragments
have been ‘wrapped around’ and would normally appear
on one line.

Architecture
In this phase the required functionality of

the detector is developed. It is coded in an
executable specification (architecture)
without the burden of implementation
constraints. The analysis as well as the
construction of the architecture is supported
by J code fragments.

Problem analysis
Promising methods found in the literature

to detect rasters are often based on Fourier
transforms to solve the following problems:

5 independence of raster form (dots, line
pairs etc.)

5 independence of raster orientation (all
angles)

5 handling of text
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Fig. 3 Bitmap read into the matrix variable

Fig. 2 Used development methodology; separation of functionality and
implementation
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5 handling of strict horizontal or vertical
line rasters.

Execution speed is not an issue in this phase. 
To start the investigation, a part of the

problem area in Fig.1 is read in a matrix. 

load ‘graph’ NB. load image
library
bitmap =: readbmp ‘raster.bmp’ 
NB. read bitmap

A small bitmap (16 × 16) is read into matrix
variable bitmap (Fig. 3). 

Since the analysis must be performed in a
local environment the bitmap is first tiled in
8 × 8 byte patches before being transformed
into the frequency domain. 

load ‘addons\fftw\fftw’ 
NB. load fft library
tiles =: (2 2$8) <;._3 bitmap 
NB. tessellate bitmap
tilesF =: fftw &.> tiles 
NB. apply fft analysis to each tile

The verb <; ._ 3 is a shorthand in J for ‘tessellate’ with the
tiling pattern given by the left argument. This tiling
pattern, defined by 2 2$8, evaluates into a 2 × 2 shaped
matrix containing all 8s, is given below:

8  8
8  8

This matrix actually defines  a movement vector and a
displacement vector for the two dimensions used in the
tiling process. The result of this tessellation is given in Fig.
4. 

The spectrum of one of these patches or tiles (upper left)
is shown in Fig. 5. The following observations can be made:

5 The (amplitude) spectrum contains complex numbers,
the real part is at the j’s left-hand side, the imaginary
part at the right-hand side.

5 The DC component, upper left corner at (0,0), is
relatively large.

5 The maximum amplitude can be found at (y,x) = (4,3)
and at (4,5) indicating a relatively high frequency
raster.

5 Note the symmetry around column and row number 4,
the principal components may be confined into an
upper left 5 × 5 sub-matrix.

Analysis indicates that in the problem regions two
dominant rasters occur in the 60-135 lpi band. The
solution of the problem is a band detector, which should
have the circular symmetry property, since rasters may
be positioned under arbitrary angle (see Fig. 6).

Towards a solution
The architecture is a functionally complete and

Fig. 4 Result of tesselation
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Fig. 5 Spectrum of one of the patches or tiles
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executable specification, and therefore provides a proven
correct basis when starting the implementation process. 

In an 8 × 8 tile, rasters as fine as 212 lpi can be detected,
large enough for the required 60-133 lpi band (see Fig. 7).
Since the 8 × 8 spectrum of this tile exhibits redundant
information only the principal components—expressed
by their lpi numbers—are presented in a 5 × 5 matrix.
The band detector indicated by Fig. 6 is approximated by
the shaded components. 

The specification for raster detection in the 60-135 lpi
interval, resulting in a single boolean per tile, is now
derived and expressed in J fragments.

The matrix singleTileF is one of the many frequency

domain tiles (tilesF, see Fig. 5). The power spectrum of
this 8 × 8 tile is taken by first squaring each complex
number (*:) followed by taking its magnitude (|). Note the
right to left evaluation order, see Fig. 8. The identity
function ] forces a display of its right argument
(assignments are silent).

] powerTileF =: |*: singleTileF

Since only the shaded components in Fig. 7 are required
we only select the lower 4 × 4 submatrix (4 4{.), see Fig. 9:

] intermdF =: 4 4{. powerTileF

Looking closer to the components which have to be
selected one can cover the shaded area by masking of the
lower 2 × 2 sub-matrix and component (3,3). This is done
by function ammend (}), which can update specified
(group) components. The left 0 is the update value (see
Fig. 10 for the filtered result):

] filteredF =: 0((0 1;0 1);3 3)} intermdF

The accumulated power in this frequency band is
determined by counting all columns by function +/ into
four sub-totals and again +/ to accumulate all column
totals. Comparing it with a certain threshold returns the
answer whether a raster is present or not:

rasterDetected=: THRESHOLD < +/+/
filteredF

Putting all the parts together will reveal the complete
functional specification (the architecture) of this raster
detector:

RasterDetected =: THRESHOLD < +/+/ 
0((0 1;0 1);3 3)} 4 4{. |*: singleTileF

The rejection of pure horizontal and vertical rasters is not
given here but is based on the typical power distribution
between DC and accumulated AC bands.  

Implementation
Although the specified functionality is  executable it is

still far a way from the target language (in our case C).
The goal of the implementation phase (see Fig. 2)
is to work towards a realisation without
compromising or altering the functionality
(architecture). In this section only a few
implementation problems are addressed.

Problem analysis
Implementation of raster detection in software

on a standard PC with a processing time of less
than 0·5s requires new techniques, such as:
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Fig. 7 Band detector approximation (numbers
indicate lpi)
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5 reduction of dimensionality
5 reduction of data size
5 use of look-up tables (LUTs) to speed up Fourier

transforms
5 reduction of spectrum information to only the two most

dominant power bands. 

The last two are not elaborated here. We will elaborate on
the other two techniques:

5 Reduction of dimension: Current PC processors are not
equipped to deal with Fourier transforms of a single 2D
tile. To do so the 2D problem must be transformed in
real time to simpler multiple 1D problems.

5 Reduction of data size: A good estimate of frequency
content can be made by finding the number of times the
grey values within each byte cross the average values
of rows and columns (see Fig. 11).

Reduction of data size has to be performed for each tile,
and within a tile for each of its rows and each of its
columns. The following derivation shows the reduction
for rows for a single tile (most upper left tile in the tiled
bitmap tiles). This tile, again the upper left one, is given
as Fig. 12.

The averages per row are computed via a so-called 
fork construct, a function composition. Averaging 
rows includes summation over rows (+/”1), counting the
number of members (#) and taking the quotient of both
(%); concisely notated by ( (+/”1 % #) ).

The average of each row is given below by vector
threshRows:

] threshRows =: (+/"1 % #) singleTile

152.875 154.625 152.25 153.5 153.5 154 153.375
153.75

Comparing each row with this row average (singleTile >
threshRows) will yield the result as described in Fig. 11
(see boolean matrix, Fig. 13):

] fingerPrintRows =: #. singleTile >
threshRows

The boolean row vectors within this matrix represent the
essence of the original grey level information. To retrieve
its confined raster information in a fast way, an index (to
be used for a LUT) has to be produced for each of the
rows. Each row is interpreted as a binary number by
applying the function #., resulting in fingerPrintRows:

82 181 82 184 82 170 90 232

Summary 
The problem size is reduced in several steps until it can

be realised on a standard PC processor. Such reduction
with acceptable quality degradation is performed in the
following steps:

1 2D to multiple 1D transforms reduction
2 removal of DC power and other non relevant frequency
content
3 reduction of grey level information to numbers of zero
crossings
4 reduction of generated spectra to only the two highest
power bands.

The complexity of this particular detector was suffici-
ently low that a C implementation could be made by hand
with the necessary LUT tables generated by a J script to
C source, although J could well have been used for the
complete development: implementation as well as design.

Fig. 9 Intermediate result 
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Conclusions
Raster detection

The goal of both raster form and orientation-inde-
pendence is realised (see Fig. 14 to get an impression of the
enhancements.) The white blobs are clearly much smaller
than before.

The global raster detection is realised within 0·13 s on
average per A4 page on a 600 MHz Pentium III. No

significant improvement can be expected from optimisation
in processing speed since within-memory data transfer rates
enforce a lower bound, which has been determined as 0·09 s.

Methodology and language issues
Using J for this and other applications helped build up

experience of how IT professionals use the language. The
following statements summarise their findings:

Positive features of J
1 It supports the requirement phase, starting from problem
analysis to functional specification (architecture). 
2 It supports the design and the recording of design

decisions and alternatives during the implementation
phase.
3 It enables early executability of specifications, and
thereby reduces proliferation of errors further on in the
software development process.
4 It enables functionality to be expressed at any given level
of abstraction, from a high abstract level down to
production code. 

Negative features of J
1 The relationships between J concepts and the
development methods used in the architectural
and design processes are not completely
straightforward. 
2 More specifically, it is not immediately clear
how to use the benefit of executable
specifications, that is, by gradually replacing
abstract specifications with implementation code. 
3 Deriving an architecture and developing an
implementation do not in themselves require a
specific computing language.
4 J does not resemble other popular languages and
has an esoteric image, which makes it difficult to
switch between J and other languages. 

To conclude, using J for problem analysis and
system design is complicated by factors which
have nothing to do with the language itself, but
which can divert attention from the primary goal
of putting a right methodology in place.

Education is the way to address these issues, through
courses at technical colleges and universities. However, for
engineers who are willing to spend time applying this sort
of methodology and learning the language J, the effort
involved will certainly pay off.
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