Roots | p. 1 1 0 | Polynomial |
p. c ↔ (m;r) If e is a vector whose elements are all non-negative integers, then p.<c,.e gives the coefficients of the equivalent polynomial: (p. <c,.e)&p. ↔ (<c,.e)&p. |
There are three cases -- coefficients; multiplier and roots; multinomial (boxed matrix of coefficients and exponents):
where m is a scalar; c and r are
scalars or vectors; and e is a vector or matrix such
that ($e)-:(#c),(#y) . A scalar y is extended normally.
|
p. 1 0 0 1 +-+-----------------------------+ |1|_1 0.5j0.866025 0.5j_0.866025| +-+-----------------------------+ ]mr=: p. c=: 0 16 _12 2 NB. Multiplier/Roots from Coefficients +-+-----+ |2|4 2 0| +-+-----+ x=: 0 1 2 3 4 5 (c p. x), ((<c,.i.4)p. x), (mr p. x),: 2*(x-4)*(x-2)*(x-0) 0 6 0 _6 0 30 0 6 0 _6 0 30 0 6 0 _6 0 30 0 6 0 _6 0 30 c=: 1 3 3 1 c p. x 1 8 27 64 125 216 (x+1)^3 1 8 27 64 125 216 bc=: !~/~i.5 NB. Binomial coefficients bc;(bc p./ x);((i.5) ^~/ x+1) +---------+--------------------+--------------------+ |1 0 0 0 0|1 1 1 1 1 1|1 1 1 1 1 1| |1 1 0 0 0|1 2 3 4 5 6|1 2 3 4 5 6| |1 2 1 0 0|1 4 9 16 25 36|1 4 9 16 25 36| |1 3 3 1 0|1 8 27 64 125 216|1 8 27 64 125 216| |1 4 6 4 1|1 16 81 256 625 1296|1 16 81 256 625 1296| +---------+--------------------+--------------------+ c&p. d. 1 x NB. First derivative of polynomial 3 12 27 48 75 108 (<1 _1 ,. 5 0) p. 3 NB. Coefficients / Exponents 242 _1 0 0 0 0 1 p. 3 242 p. <1 _1 ,. 5 0 NB. Coefficients / Exponents to Coefficients _1 0 0 0 0 1 c=: _1 1 2 3 [ e=: 4 2$2 1 1 1 1 2 0 2 c,.e NB. Coefficients / Exponents _1 2 1 1 1 1 2 1 2 3 0 2 (<c,.e) p. <y=:2.5 _1 NB. Multinomial 11.75 c +/ .* e */ .(^~) y 11.75Note that (<c,.e)p.<y is a “proper” multinomial only if the elements of e are all non-negative integers. In general the powers are not so limited, as in the weighted sum of square root and 4-th root:
] t=: <2 3,.1r2 1r4 +-----+ |2 1r2| |3 1r4| +-----+ (t p. 16), +/ 2 3 * 16 ^ 1r2 1r4 14 14The variant p.!.s is a stope polynomial; it differs from p. in that its definition is based upon the stope ^!.s instead of on ^ (power).