Anagram Index | A. 1 0 _ | Anagram |
If T is the table of all !n permutations of
order n arranged in lexical order (i.e., /:T
is i.!n), then k is said to be the
anagram index of the permutation k{T . A. applied to a cycle or direct permutation yields its anagram index: A. 0 3 2 1 is 5, as are A. 3 2 1 and A.<3 1 and A.0;2;3 1 . |
The expression k A. b permutes items of b by
the permutation of order #b whose anagram index is k .
|
(A. 0 3 2 1) , (A. <3 1) 5 5 A. |. i.45 119622220865480194561963161495657715064383733759999999999 <: ! 45x 119622220865480194561963161495657715064383733759999999999 tap=: i.@! A. i. NB. Table of all permutations (tap 3);(/: tap 3);({/\ tap 3);(/:{/\ tap 3) +-----+-----------+-----+-----------+ |0 1 2|0 1 2 3 4 5|0 1 2|0 1 5 2 4 3| |0 2 1| |0 2 1| | |1 0 2| |1 2 0| | |1 2 0| |2 0 1| | |2 0 1| |1 2 0| | |2 1 0| |1 0 2| | +-----+-----------+-----+-----------+In particular, 1 A. b transposes the last two items of b, and _1 A. b reverses the list of items, and 3 A. b and 4 A. b rotate the last three items of b. For example:
b=: 'ABCD' (0 3 2 1{b);(0 3 2 1 C.b);((<3 1)C.b);(3 4 A.b) +----+----+----+----+ |ADCB|ADCB|ADCB|ACDB| | | | |ADBC| +----+----+----+----+ (_19 5 A. b) ; (_19 |~ ! # b) +----+-+ |ADCB|5| |ADCB| | +----+-+